◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

大学学部レベル質問スレ 18単位目


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1651147986/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん2022/04/28(木) 21:13:06.70ID:oq75KvzG
大学で習う数学に関する質問を扱うスレ

・質問する前に教科書や参考書を読むなりググるなりして
・ただの計算は
http://wolframalpha.com
・数式の表記法は
http://mathmathmath.dote ra.net
・質問のマルチポストは非推奨
・煽り、荒らしはスルー

関連スレ
分からない問題はここに書いてね478
http://2chb.net/r/math/1511604229/

※前スレ
大学学部レベル質問スレ 17単位目
http://2chb.net/r/math/1637449244/

2132人目の素数さん2022/04/28(木) 21:19:23.90ID:oq75KvzG
分からない問題はここに書いてねスレは現行落ちてるようですが、
消すのもなんだったので、前スレ>>1に書いてたのをとりあえずそのまま書いてます

3132人目の素数さん2022/04/28(木) 21:53:16.62ID:37/SqDmQ
>>991
>排中律と矛盾律の区別すらつかんのかおまえら
排中律
P∨¬P
(君の言うところの)矛盾律
¬(P∧¬P)
古典論理ではどちらも真
特にドモルガンの法則で同値変形できる
直観主義論理では前者は真ではなく後者は真
開集合とその補集合の内包の合併集合は一般に全体集合でないけれども
開集合とその補集合の内包の共通部分の補集合の内包は必ず全体集合になるからね

4132人目の素数さん2022/04/28(木) 21:56:25.03ID:37/SqDmQ
同様に
排中律の否定¬(P∨¬P)は古典論理ではもちろん直観主義論理でも偽
開集合とその補集合の内包の合併集合の補集合の内包は空集合だからね

5132人目の素数さん2022/04/28(木) 23:37:51.33ID:XL8AiXBD
三角形の五心(重心、垂心等々)のどれについても、3本の直線が1点で交わるのが不思議でなりません。
なにか深い理由があるのでしょうか?(個々の場合がそうであるのはもちろん分かるのですが)

6132人目の素数さん2022/04/29(金) 06:44:36.78ID:mJMIOEKH
((A→B)∧(¬A→B))→Bは直観主義論理でも成り立つのかどうか、考えたけどわからなかった

7132人目の素数さん2022/04/29(金) 07:26:43.82ID:vvTdXbVu
((A→B)∧(¬A→B))→B
=¬((¬A∨B)∧(¬¬A∨B))∨B
=¬((¬A∧¬¬A)∨B)∨B
=¬(¬(A∨¬A)∨B)∨B
=¬B∨B
成立するとは言えません

8132人目の素数さん2022/04/29(金) 09:41:42.56ID:vvTdXbVu
>>5
現実を受け入れましょう

9132人目の素数さん2022/04/29(金) 10:08:18.16ID:kSLeq71v
>>5
マルチポスト

10132人目の素数さん2022/04/29(金) 13:01:00.16ID:y+mU0iwN
アホ死ね!アホ死ね!アホ死ね!

11132人目の素数さん2022/04/29(金) 14:02:48.47ID:J8ImCyMJ
>>9
先の1か所では全く回答が得られなかったので

>>8
当然既知の問題だろうと思うのですがどこにも答えがみつかりません。
もしわかれば教えてください。

12132人目の素数さん2022/04/29(金) 14:04:41.33ID:+oeK6kIJ
>>11
>当然既知の問題だろうと思うのですが
問題にしている人を見たことありません

13132人目の素数さん2022/04/29(金) 14:14:06.46ID:J8ImCyMJ
>>12
答えは自明だということでしょうか?
疑問が問題として成立していないということでしょうか?
それとも超難問ということでしょうか?(それはないと思いますが)

どこかで話題にされていることだと思うのですが。

14132人目の素数さん2022/04/29(金) 14:16:21.62ID:+oeK6kIJ
>>13
1点で交わることが証明できるので証明されたわけです
その「意味」を考えるのは「意味」があるのかどうか

15132人目の素数さん2022/04/29(金) 14:16:49.07ID:24Hbnuef
3本の直線が1点で交わるような点を五心って呼んでるだけだろ

16132人目の素数さん2022/04/29(金) 14:19:31.75ID:+oeK6kIJ
もちろん「意味」を考えようとするのは「無意味」ではないかもしれません
面白い解釈・説明を思いついたら教えてください

17132人目の素数さん2022/04/29(金) 14:20:23.28ID:+oeK6kIJ
でもこのスレでなくて
より適切なスレがあるかも

18132人目の素数さん2022/04/29(金) 21:02:05.07ID:J8ImCyMJ
>>16
「意味」というより、むしろ「形式」に関する不思議さという感じです。

>>17
そうですね。たしかに迷ったのですが。
数学基礎論?あるいは?
でも、そんなに珍しい問いとも思えないのですが

19132人目の素数さん2022/04/29(金) 21:40:22.33ID:vvTdXbVu
>>18
>「意味」というより、むしろ「形式」に関する不思議さという感じです。
形式とは?

20132人目の素数さん2022/04/29(金) 21:41:04.78ID:vvTdXbVu
>>18
>でも、そんなに珍しい問いとも思えないのですが
1+1=2になるのは不思議ですと言っているように見えますよ

21132人目の素数さん2022/04/30(土) 00:19:13.00ID:q4MfboGi
>>15で終わってる話だとは思うが
>>5はEncyclopedia of Triangle Centersでも眺めとけば

分野的には総合幾何学 (synthetic geometry) だろうが現代的にはドマイナーだろ
>>18は一体どっから基礎論出てきた?

22132人目の素数さん2022/04/30(土) 12:00:08.12ID:JrpS5AMt
△ABCで点の名前を取り替えても引かれる直線は同じだから
3直線の交点は一般には3点あるけど
点の名前を入れ替えても変わらないから実は1点
こういうことを言わせたかったのか

23132人目の素数さん2022/04/30(土) 12:11:23.46ID:/9DIEapR
999 返信:132人目の素数さん[sage] 投稿日:2022/04/28(木) 21:40:27.83 ID:+gaZyQqp [1/2]
>>996
だからAさんが計算したらJordanの標準形がXになりました
Bさんが計算したらYになりました
そんな事が起こるのかでしょ?
もちろん答えは起こらない、なぜか、で紹介されてる話が
XとYが同じ行列Aと相似ならXとYも相似にならざるをえず、その場合任意の整数kに対してrank(X^k)とrank(Y^k)は一致しないといけないでしょ?

ありがとうございます。

齋藤正彦著『線型代数演習』の一意性の説明を見て、分かりました。

24132人目の素数さん2022/04/30(土) 12:12:24.67ID:JrpS5AMt
たぶんそういう攻め方では示せないと思うけれど
期待しているのはそういう「原理」?

25132人目の素数さん2022/04/30(土) 13:17:45.14ID:YWfy5BEL
>>24
そうそう

26132人目の素数さん2022/04/30(土) 15:34:21.37ID:IP1jGD2r
>>25
簡単な証明が欲しいと泣いても仕方ありませんよ

27132人目の素数さん2022/04/30(土) 20:47:34.44ID:/9DIEapR
齋藤正彦著『齋藤正彦 線型代数学』

以下の命題が当然成り立つと書かれています。
証明してください。

-----------------------------------------------

T を有限次元ベクトル空間 V 上の線形変換とする。
α を T の固有値とする。
m を α の重複度とする。
W(α) を α に属する広義固有空間とする。

dim W(α) ≦ m

が成り立つ。

28132人目の素数さん2022/04/30(土) 20:55:06.53ID:/9DIEapR
>>27

あ、分かりました。

29132人目の素数さん2022/04/30(土) 20:58:58.78ID:/9DIEapR
>>27

あ、やっぱり分かりません。

証明してください。

30132人目の素数さん2022/04/30(土) 21:12:55.96ID:vz0MgWS9
jordan分解したら当たり前
つまりそもそも質問する時にjordan分解使っていいのかを明示しとかんと質問にならん

31132人目の素数さん2022/04/30(土) 21:14:13.86ID:/9DIEapR
>>30

Jordan分解というのはそれ以前に出てきていませんので、使ってはいけません。

32132人目の素数さん2022/04/30(土) 21:32:34.78ID:/9DIEapR
>>27

齋藤正彦さんが、この命題が成り立つのは「当然」と書いているのは、有限次元のベクトル空間が広義固有空間の直和に分解できるという定理の証明の中でです。

T を有限次元ベクトル空間 V 上の線形変換とする。 T の異なる固有値の全部を β_1, …, β_p, それらの重複度を m_1, …, m_p とする。

V = W(β_1) (+) W(β_2) (+) … (+) W(β_p)

が成り立つ。

齋藤さんは、 dim W(β_i) ≧ m_i のほうは証明しています。

そして、 W(β_1) + W(β_2) + … + W(β_p) が直和であることも証明しています。


ちょっと思ったのですが、有限次元のベクトル空間が広義固有空間の直和に分解できるという定理を証明するためには、

dim W(β_i) = m_i であることを証明する必要はなく、 dim W(β_i) ≧ m_i が証明できさえすれば充分ですよね?

dim [W(β_1) (+) W(β_2) (+) … (+) W(β_p)] = dim W(β_1) + dim W(β_2) + … + dim W(β_p) ≧ m_1 + m_2 + … + m_p = n

から、 dim [W(β_1) (+) W(β_2) (+) … (+) W(β_p)] = n が分かりますし、結果的に、 dim W(β_i) = m_i となることも分かります。

33132人目の素数さん2022/04/30(土) 21:46:41.65ID:vz0MgWS9
>>32

> 齋藤さんは、 dim W(β_i) ≧ m_i のほうは証明しています。
>
> そして、 W(β_1) + W(β_2) + … + W(β_p) が直和であることも証明しています。

この2つ証明しててまだ分からないならその本にで出せるレベルにないよ

34132人目の素数さん2022/04/30(土) 22:03:23.86ID:/9DIEapR
dim W(β_i) = m_i

が成り立つことは

>>33

に書いた通り、分かります。

分からないのは、齋藤正彦さんが dim W(β_i) ≦ m_i が成り立つのは「当然」と書いたことです。

35132人目の素数さん2022/04/30(土) 22:04:45.64ID:/9DIEapR
訂正します:

dim W(β_i) = m_i

が成り立つことは

>>32

に書いた通り、分かります。

分からないのは、齋藤正彦さんが dim W(β_i) ≦ m_i が成り立つのは「当然」と書いたことです。

36132人目の素数さん2022/04/30(土) 22:04:55.09ID:vz0MgWS9
その2つ証明できてれば“当然”
アホか

37132人目の素数さん2022/04/30(土) 22:08:37.29ID:/9DIEapR
齋藤正彦さんの本には、このような意味不明な記述が沢山あります。

完成度が佐武一郎さんの本に比べてずっと低いと思います。

38132人目の素数さん2022/04/30(土) 22:14:30.38ID:/9DIEapR
>>36

齋藤正彦さんの有限次元のベクトル空間が広義固有空間の直和に分解できるという定理の証明の流れを書きます。
それを読めば、齋藤正彦さんが「当然」と書いたことが奇妙であることが分かると思います。

(1) V_p = W(β_1) + W(β_2) + … + W(β_p) が直和であることを証明している。
(2) V = V_p であることを示せば良いと書き、そのためには dim W(β_i) = m_i を示せばよいと書いている。
(3) dim W(β_i) ≧ m_i を証明し、逆の不等式は当然だから、 dim W(β_i) = m_i が成り立つと書いている。

もし、この証明が上のように書かれていなくて、以下のようだったなら、何も奇妙なところはなかったことになります:

(1) V_p = W(β_1) + W(β_2) + … + W(β_p) が直和であることを証明する。
(2) V = V_p であることを示せば良い。そのためには dim W(β_i) ≧ m_i を示せばよい。
(3) dim W(β_i) ≧ m_i を証明する。

39132人目の素数さん2022/04/30(土) 22:15:52.39ID:/9DIEapR
>>38

そして、結果的に

dim W(β_i) = m_i

が成り立つことも分かるということになります。

40132人目の素数さん2022/04/30(土) 22:17:24.09ID:vz0MgWS9
だからそんな事書かなくてもそのレベルの本が読めるレベルの人間なら当たり前だって言ってるんだよバーカ

41132人目の素数さん2022/04/30(土) 22:19:58.91ID:/9DIEapR
>>40

では証明してください。
以下の証明以外の証明をお願いします。


dim [W(β_1) (+) W(β_2) (+) … (+) W(β_p)] = dim W(β_1) + dim W(β_2) + … + dim W(β_p) ≧ m_1 + m_2 + … + m_p = n
∴ dim [W(β_1) (+) W(β_2) (+) … (+) W(β_p)] = n
∴ dim W(β_i) = m_i

42132人目の素数さん2022/04/30(土) 22:22:59.73ID:/9DIEapR
結論としては、

(1) V_p = W(β_1) + W(β_2) + … + W(β_p) が直和であることを証明する。
(2) V = V_p であることを示せば良い。そのためには dim W(β_i) ≧ m_i を示せばよい。
(3) dim W(β_i) ≧ m_i を証明する。

と証明を書くべきところを、齋藤正彦さんはきちんと書けなかったということになります。

43132人目の素数さん2022/04/30(土) 22:37:28.34ID:aB6840TE
>>42
確かにお前の言う通りだ

>>40はどうしようもねーな
明らかで済んだら教科書は要らない

44132人目の素数さん2022/04/30(土) 22:41:33.57ID:vz0MgWS9
V = ⊕W(βᵢ)であるからn = ΣdimW(βᵢ)
miが多重度の全体だから n = Σmi
dimW(βᵢ)≧mi
∴ dimW(βᵢ)=mi (∀i)
バーカ

45132人目の素数さん2022/04/30(土) 23:39:04.63ID:JrpS5AMt
>>38
>(1) V_p = W(β_1) + W(β_2) + … + W(β_p) が直和であることを証明している。
>(2) V = V_p であることを示せば良いと書き、そのためには dim W(β_i) = m_i を示せばよいと書いている。
>(3) dim W(β_i) ≧ m_i を証明し、逆の不等式は当然だから、 dim W(β_i) = m_i が成り立つと書いている。
この流れで自然ですよ
>(1) V_p = W(β_1) + W(β_2) + … + W(β_p) が直和であることを証明する。
>(2) V = V_p であることを示せば良い。そのためには dim W(β_i) ≧ m_i を示せばよい。
>(3) dim W(β_i) ≧ m_i を証明する。
こちらでも結構ですよ

46132人目の素数さん2022/04/30(土) 23:41:20.47ID:JrpS5AMt
>>43
>明らかで済んだら教科書は要らない
まあここは明かで十分ですかね

47132人目の素数さん2022/05/02(月) 14:00:23.88ID:MlfB1dB5
統失です。
球面は、正方形の角の軌跡の集合なのでしょうか?
いろんな角度で正方形を回転させる。

48132人目の素数さん2022/05/02(月) 14:05:01.31ID:zy1+Ye+n
正四面体の角の中面の長さの軌跡と考える方が一般的です

49132人目の素数さん2022/05/02(月) 14:53:02.73ID:2kUu3ZDv
『数学セミナー2022年03月号』の「圏論入門の足掛かり」に、

C を圏としたとき、 C における2つの射 f, g : X → Y とそのイコライザーとその普遍性を表した図式が可換だと書かれています。

f, g : X → Y という図式を考えると、一般に f ≠ g なので、この部分で可換であるという条件が満たされないように思うのですが、どうなんでしょうか?

可換の定義が厳密に書いてないため、判断できません。

50132人目の素数さん2022/05/02(月) 15:48:44.48ID:pGRJEqRO
e:Z→Xがf,gのequalizer
:⇔
(1) 図式
Z→X
↓ ↓
X→Y
が可換(ただしZ→Xはどちらもe、X→Yは片方fでもう一方がg
(2) 略
の図式の話やろ?
f,gが等しくなくても可換になることなんて山のようにあるでしょ?

51132人目の素数さん2022/05/02(月) 16:02:03.06ID:oGW0u+cE
イコライザーの図式で可換と言っているのは、普遍性を満たす3つの対象の図式であって、
全体の図式(X→→Yを含む)は可換ではない
確かに初学者には、はっきり書いたほうが分かりやすいかもしれない

52132人目の素数さん2022/05/02(月) 16:34:36.44ID:2kUu3ZDv
>>50-51

ありがとうございます。

53132人目の素数さん2022/05/02(月) 16:39:17.73ID:bafKYVlf
>>51
なに言ってんのか分からない

54132人目の素数さん2022/05/02(月) 16:42:21.07ID:oGW0u+cE
>>53
https://ja.wikipedia.org/wiki/%E7%AD%89%E5%8C%96%E5%AD%90
の圏論における等化子の図式のうち、
普遍性を満足するO,E,Xの図式は(当然ながら)可換だが、
X,Yも入れたこの図全体の図式は可換ではない、ということ

55132人目の素数さん2022/05/02(月) 18:37:31.78ID:bafKYVlf
>>54
ん?X→Yの2つの射のところのこと?
この図全体の図式が可換というのは
図のどの部分を抜き出しても可換図式であるという意図?
ID:2kUu3ZDv もそのように解釈してるのかな?
イコライザーに関しては
>>50の(1)が可換なときウィキペの三角が可換となるuが存在するわけで
可換というとこの2ヶ所つまり>>50の説明が普通だと思う>>49
ウィキペのような書き方も良くあるけど
Y←X

X
のプルバックがイコライザという書き方にした方がいい
>>51で言っているのはそれ?

56132人目の素数さん2022/05/02(月) 19:15:43.04ID:2kUu3ZDv
>>55

そうです。
図式を、対象を点、射を辺とする有向グラフと考えたときに、有向パスで結ばれた2点を任意にとるとその2点を結ぶ任意のパスに対応する射の合成がすべて
等しいとき可換図式というのかと思っていました。
X → Y には2つの射 f, g があるので、可換図式であるためには、 f = g でなくてはならないのかと思っていました。

57132人目の素数さん2022/05/02(月) 20:10:39.93ID:exYQqzLc
まぁでもwikiに載ってる図式が可換と書いてあったらf=gになってしまう気はするけどな
wikiのレベルなんてそんなもん

58132人目の素数さん2022/05/02(月) 20:14:51.62ID:Bm4ClGqt
>>56
グラフ理論の定義が上手くいくか自分は分からないが、考え方はそれで合ってる

59132人目の素数さん2022/05/02(月) 20:27:54.96ID:2kUu3ZDv
『数学セミナー2022年03月号』の「ガウスの数論から現代数学へ(II)」(栗原将人)

「また、種の理論が相互法則だけで組み尽くせない力を持っていることも、わかっていただけると思う。高瀬正仁氏は[3]155ページで「ガウスの目には、
ガウス以前の素数の形状問題は特別な形で表現された平方剰余の理論のように映じたでしょう」と述べているが、これらの表はそうではないことを
語っていると思われる。」

脚注には、以下のように書かれています。

「[2]212ページには「ガウスの目には、素数の形状問題は平方剰余の理論の一区域のように見えたのではないかと思います」と同じ主張が述べられている。」


以下の文献を上の文章を書くためだけに引用しています。

[2] 高瀬正仁『ガウスの数論、わたしのガウス』筑摩書房(2011年)
[3] 高瀬正仁『ガウスに学ぶ初等整数論』東京図書(2017年)

60132人目の素数さん2022/05/02(月) 21:45:35.88ID:kqmCXTIx
>>56
>射の合成がすべて
>等しいとき可換図式というのかと思っていました。
可換な三角や四角は中に○矢印書くのが可換図式

61132人目の素数さん2022/05/02(月) 21:48:56.88ID:kqmCXTIx
>>57
イコライザの説明では良くある図ではある
ソースとターゲット同じ射f,gが(2点間の有向グラフとして)可換てのは
その通りf=gだよね
そういう無意味なことまで杓子定規に考えるのはよろしくなかろう

62132人目の素数さん2022/05/02(月) 21:57:28.83ID:Bm4ClGqt
自分も>>51で終わったものを何故そこまでややこしくしたのか不思議でならなかったな

63132人目の素数さん2022/05/02(月) 22:02:05.18ID:Bm4ClGqt
ちなみにイコライザーのwikipediaは一応きちんと「可換にする(eq○u=mを満たす)」と書いてある
読んでないが、引用を見る限り数学セミナーの書き方が混乱を招くものだったのかもしれない

64132人目の素数さん2022/05/02(月) 22:46:34.74ID:Sh/7oPin
正確に数式も併記しとけばいいんだよ
てかそもそも数式の方がメインで図式は参考図というのが基本
ましてや“辞書”として使える文章なら感覚的な捉えやすさと正確さの天秤は基本正確さの方を優先すべき
読者の感覚的理解も磨く事を目的ともする教科書とはそこが違う

65132人目の素数さん2022/05/03(火) 11:38:44.38ID:+4d/bR9f
正規形でないODEで重要なものってありますか?

66132人目の素数さん2022/05/04(水) 09:18:03.96ID:b/UIKiTD
>>65
「正規形」の定義を教えてください

67132人目の素数さん2022/05/04(水) 10:02:20.27ID:kBPIAUHG
>>66
連立一階常微分方程式です。

68132人目の素数さん2022/05/04(水) 10:19:09.98ID:+hrWGuHu
>>65
「重要」の定義も

69132人目の素数さん2022/05/04(水) 11:19:39.59ID:BHpsp0O5
>>68
ばぁ〜か🤪
うんこ食って寝ろ

70132人目の素数さん2022/05/04(水) 16:02:12.27ID:wllA7GIa
T を T(x_1, x_2, x_3, …, x_n) = (x_1, 2*x_2, 3*x_3, …, n*x_n) で定義される C^n 上の線形変換とする。

T の不変部分空間をすべて決定せよ。

71132人目の素数さん2022/05/04(水) 16:45:51.01ID:s1jxb931
>>69
おまODE知らんのだろ
重要性って人によって全然違うんだが?

72132人目の素数さん2022/05/04(水) 17:19:39.64ID:otQ4pULI
むしろ5chで微分方程式の知識を持ってる奴ほとんどいない

73132人目の素数さん2022/05/04(水) 17:39:02.15ID:Du/dc1cR
>>72
y''=1/xy
を解け。

74132人目の素数さん2022/05/04(水) 19:31:12.34ID:otQ4pULI
やだ

75132人目の素数さん2022/05/04(水) 21:23:45.23ID:+hrWGuHu
>>74
やだやだゆうやつがやだ

76132人目の素数さん2022/05/04(水) 21:51:37.71ID:8ikhgo9W
( ´∀`) < 矢田屋だ
   ↑
  矢田

77132人目の素数さん2022/05/06(金) 10:01:12.48ID:6xrbKvNl
2×2行列A、Bがいずれも逆行列を持たず、A+Bは逆行列をもち、さらに、AB=BAならば、AB=0であることを証明せよ。


この問題への以下の回答がよくわからないので
解説して下さい、よろしくお願いします


Tacosan
A は 2つの独立な固有ベクトル x, y をもち, これらはどちらも B の固有ベクトルでもある. で条件から Ax = By
= 0 としてよいので AB = O.

https://oshiete.goo.ne.jp/qa/12932948.html

78132人目の素数さん2022/05/06(金) 11:56:11.70ID:6B9UxDz1
AもBも固有ベクトル分解を持たないならいずれのJordan cellは[[0,1],[0,0]]と相似で特に冪零になる
すると
(A+B)(A-B)=A²-B²=O
からA=Bになってしまうので矛盾
よってAに関する固有ベクトル分解V = Fx⊕Fyを持つとしてよい
A,Bが可換だからこれはBに関する固有ベクトル分解にもなっている
実際x,yに対する固有値をl,mとして
ABx = BAx = lBx
∴BxはAの固有値lに対する固有ベクトル
∴Bx = ux (∃u)
同様にBy = vy
さらに仮定からkとl、uとvのいずれかが0だがk=u=0なら(A+B)x=0となって仮定に反する
∴k=0, v=0 or l=0, u=0
前者のとき
ABx = BAx = 0、ABy= 0
でAB=0
後者も同様

79132人目の素数さん2022/05/06(金) 13:29:04.64ID:tpgbdYLZ
78が77に書いてある内容なの?

80132人目の素数さん2022/05/06(金) 14:00:40.73ID:J2V25/dU
>>76
評価

81132人目の素数さん2022/05/06(金) 22:58:27.32ID:E32NkoOD
>>77
A,Bがいずれも逆行列を持たないのでいずれも0を固有値に持つ
つまりAx=0,By=0となるx≠0、y≠0がある
これらが両方の固有ベクトルであるかどうかはどうでもよくて
もしx,yが一次従属(つまり平行)ならば(A+B)x=0となってA+Bが逆行列を持つことと矛盾するからx,yは一次独立
なのでABx=BAx=0とABy=0よりAB=O

82132人目の素数さん2022/05/07(土) 10:12:42.10ID:AmqezNRt
>>77が回答として適当かといわれると微妙なところだな
あまり分かってない人が書いてそう

83132人目の素数さん2022/05/07(土) 10:19:24.81ID:Tocm4SRv
一行目からなんかすごいこと言ってるし

84132人目の素数さん2022/05/08(日) 00:08:03.49ID:xPQo1NTZ
微分形式がわかりません
わかりやすく教えて下さい
よろしくおねがいします!

85132人目の素数さん2022/05/08(日) 16:08:43.59ID:Os1Q4ACv
証明について質問です
↓で『定理5.6.56』と、これの群論による証明があります
 https://pisan-dub.jp/doc/2011/20110114001/5_6.html
これを群論によらない形で証明できないでしょうか? (背理法とか?)

-----
定理は以下の式についてのものです。
 X^n≡a (mod p) (p:素数)

①この式が解を持つとき、解の個数はd個。
  d=(n, p-1) (d:GCD(最大公約数))

②この式が解を持つ必要十分条件は、以下を満たすこと。
  a^((p-1)/d)≡1 (mod p)

-----
特に上記の①について証明を知りたいです
(元の記述から①②の順番を入れ替えています)
よろしくお願いします

86132人目の素数さん2022/05/08(日) 17:17:56.93ID:SPrfFCn+
>>85
なぜ群論を避けたいの?
もちろんガウスは群論無しで証明したけれどかなりまわりくどいよ

87132人目の素数さん2022/05/08(日) 17:48:00.71ID:SPrfFCn+
z/pzが体であることを認めれば書けないことはないくらいの分量になるが、群論が嫌なのに体論を使うのもおかしいしな。

88132人目の素数さん2022/05/08(日) 18:03:23.43ID:Or033kxl
有理数より無理数のほうが圧倒的に多いようですが
対角線論法では、有理数の数え上げでは取りこぼすような数が少なくとも1つは存在する
という結論となっており、有理数より無理数のほうが圧倒的に多いという考えに至りません。
どうすれば有理数より無理数のほうが圧倒的に多いということを実感できるでしょうか?

89132人目の素数さん2022/05/08(日) 18:10:11.70ID:EXHQXD/I
偶数と自然数の濃度は同じです
同様に、10000000000000000の倍数と自然数の濃度も同じ
有理数と自然数の濃度も同じですね

これらの数はどんなに頑張っても1個余ることすらもないのに、無理数だと1個余ってしまうのです

めちゃくちゃ多いような気がしませんか?

90132人目の素数さん2022/05/08(日) 18:13:18.51ID:SPrfFCn+
測度論を勉強する

91132人目の素数さん2022/05/08(日) 18:18:36.18ID:6JZ1zf26
Qは可算なのにR\Qは非可算
Q~Nは例えばN×Nでも可算なので有理数を有理数個集めても無理数には全然足りない

92132人目の素数さん2022/05/08(日) 18:26:22.39ID:SPrfFCn+
それを言ったら、2つの素数で書ける自然数はN×N個だが自然数全体の中での密度はごく僅かだ。
実数濃度と可算濃度の違いは非構成的な概念を持ち出さないと実感できないと思う。

93132人目の素数さん2022/05/08(日) 18:51:26.04ID:WmfJGbb+
V を有限次元複素ベクトル空間とし、 T を V 上の線形変換とする。
T が対角化可能であるための必要十分条件は

V = Ker (T - λ*I) (+) Im (T - λ*I)

が任意の λ ∈ C に対して成り立つことであることを示せ。

94132人目の素数さん2022/05/08(日) 18:54:06.77ID:Os1Q4ACv
>>86
>なぜ群論を避けたいの
すいません。
これは私が群論を理解出来ていないためです。

群論の初心者向けテキストなどを尋ねて、証明は参照しているサイトを見るべきでしたかね?

95132人目の素数さん2022/05/08(日) 18:58:12.62ID:SPrfFCn+
>>94
有限体は原始根を持つことさえ認めれば、>>85の質問は道具無しで証明できる

96132人目の素数さん2022/05/08(日) 19:03:37.88ID:Os1Q4ACv
>>95
群論の考え方と原始根について理解できれば、もうそれだけで終わると言うことですかね。
ご対応ありがとうございました。
勉強します。

97132人目の素数さん2022/05/11(水) 11:48:11.15ID:96G/XLjv
U を C 上のベクトル空間とする。

U ∋ x → ||x|| ∈ [0, +∞) をノルムとする。

||x|| = √(<x, x>) を満たすような U 上の内積が存在するための必要十分条件は、

||u + v||^2 + ||u - v||^2 = 2 * (||u||^2 + ||v||^2) が任意の u, v ∈ U に対して成り立つ

ことであることを示せ。

98132人目の素数さん2022/05/11(水) 12:18:10.10ID:3N7aA2Er
>>97
中線定理?

99132人目の素数さん2022/05/11(水) 12:21:04.31ID:XjslyBJg
(x,y) := ( ||x||²+||y||²-||x-y||² )/2


lud20220512075032
このスレへの固定リンク: http://5chb.net/r/math/1651147986/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | Youtube 動画 >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「大学学部レベル質問スレ 18単位目 」を見た人も見ています:
大学学部レベル質問スレ 3単位目
大学学部レベル質問スレ 6単位目
大学学部レベル質問スレ 19単位目
大学学部レベル質問スレ 24単位目
大学学部レベル質問スレ 26単位目
大学学部レベル質問スレ 8単位目
大学学部レベル質問スレ 23単位目
大学学部レベル質問スレ 2単位目
大学学部レベル質問スレ 5単位目
大学学部レベル質問スレ 20単位目
大学学部レベル質問スレ 24単位目
大学学部レベル質問スレ 9単位目
大学学部レベル質問スレ 21単位目
大学学部レベル質問スレ 4単位目
大学学部レベル質問スレ 16単位目
大学学部レベル質問スレ 14単位目
大学学部レベル質問スレ 11単位目
大学学部レベル質問スレ 12単位目
大学学部レベル質問スレ 10単位目
無線LANの質問スレ 37問目
【独立開業】 起業 質問スレ 22期目
電子タバコの初心者の質問スレ 52本目
【初心者】ぷよぷよ!!クエスト質問スレ 73連鎖目
【初心者】ぷよぷよ!!クエスト質問スレ 57連鎖目 [無断転載禁止]
プロレベル質問スレ
小学生レベル質問スレ
【レベル不問】質問スレ【馬鹿用】
【レベル5】妖怪ウォッチぷにぷに質問スレpart42
【レベル5】妖怪ウォッチぷにぷに初心者&質問スレpart37
【レベル5】妖怪ウォッチぷにぷに初心者&質問スレpart38
【レベル5】妖怪ウォッチぷにぷに初心者&質問スレpart30
数学板院試質問スレ
大学数学の質問スレ Part1
高校数学の質問スレPart403
高校数学の質問スレPart404
高校数学の質問スレ Part438
高校数学の質問スレ Part423
高校数学の質問スレ Part432
高校数学の質問スレ Part417
高校数学の質問スレ Part414
高校数学の質問スレ Part439
高校数学の質問スレ Part437
高校数学の質問スレPart409
高校数学の質問スレ Part410
高校数学の質問スレ Part426
高校数学の質問スレPart402
高校数学の質問スレ Part438
高校数学の質問スレ Part415
高校数学の質問スレ Part434
高校数学の質問スレPart405
高校数学の質問スレ Part411
高校数学の質問スレPart407
高校数学の質問スレPart398
高校数学の質問スレPart397
高校数学の質問スレPart397
高校数学の質問スレPart397
高校数学の質問スレ Part430
高校数学の質問スレ Part422
高校数学の質問スレ Part433
高校数学の質問スレ Part412
【旭】高校数学の質問スレPart398
【チェンクロ】チェインクロニクル質問スレ Part46
【チェンクロ】チェインクロニクル質問スレ Part52
高校数学の質問スレ(医者・東大卒禁止) Part438

人気検索: jb porn nude 11yo 精子 まんこ 西野小春 child porn teen 洋あうろり mouse
19:49:58 up 108 days, 20:48, 0 users, load average: 42.89, 35.87, 39.29

in 0.27029895782471 sec @0.27029895782471@0b7 on 080408