裁判になったら裁判官はどう判断するんだろう?「能力低く言われたけど実はこれだけ有能」と数学論文読んで判断するの?
故人なら名誉毀損にならないから、大丈夫。
高木貞治とか?
侮辱罪も名誉毀損罪も親告罪だから、故人に対する
発言に対しては適用できんでしょ。
毛利重能と百川治兵衛
オリジナルな業績は知られていないが
日本数学史上の重要人物たち
業績いうからには英語で論文書けないとね。
スタート位置にすら立ててない。
Toyama, Hiraku; Kuranishi, Masatake
A note on generators of compact Lie groups.
{Volume numbers not printed on issues until Vol. 7, (1955)}.
Kōdai Math. Sem. Rep. 1 (1949), no. 1, 17–18.
20.0X
Review PDF Clipboard Journal Article Make Link
The following theorem was proved by Auerbach [Studia Math. 5, 43–49 (1935)].
Let G be a connected compact Lie group. For two elements x and y of G and
an integer k let M(x,y,k) be the set of elements p=∏ki=1vi, where vi=xni when
i is odd and vi=yni when i is even. Let M(x,y) be the union for k=1,2,⋯ of
M(x,y,k). Then there exist x,y so that M(x,y) is dense in G.
It is shown here that for each such G there is a k such that M(x,y,k) is dense
in G. If f(G) is the minimum of such k's, it is proved that f(G)≥dimG/rankG.
Let G be a connected compact Lie group. For two elements x and y of G and
an integer k let M(x,y,k) be the set of elements p=∏ki=1vi,
where vi=xni when i is odd and vi=yni when i is even.
Let M(x,y) be the union for k=1,2,⋯ of M(x,y,k).
Then there exist x,y so that M(x,y) is dense in G.
It is shown here that for each such G there is a k such that
M(x,y,k) is dense in G. If f(G) is the minimum of such k's, it is proved
that f(G)≥dimG/rankG.
Nagoya Mathematical Journalは1950年から