>>5 存在する。
集合A⊂Rに対して、Aの閉包をA^aと書き、Aの開核をA^iと書くことにする。
ルベーグ可測集合Aに対して、Aのルベーグ測度をm(A)と書くことにする。
補題1:Oは開集合でNはゼロ集合とする。このときO⊂(O∩N^c)^aが成り立つ。
補題2:閉集合 K⊂R であって、K^i=φかつm(K)>0を満たすものが存在する。
>5への回答:
補題2を満たすKを取る。このKが求めるAである。実際、ある開集合Oと零集合S1,S2が存在して
K=(O∪S1)∩S2^c
と表せたとする。K ⊃ O∩S2^c であるから、
K = K^a ⊃ (O∩S2^c)^a ⊃ O
が成り立つ(最後の包含は補題1を使った)。よって K ⊃ O となるので、
φ = K ^i ⊃ O^i = O
となる。すなわちO=φとなる。このとき K=S1∩S2^c ⊂ S1 だから
m(K)≦m(S1)=0すなわちm(K)=0となるが、これはm(K)>0に矛盾する。
よって、どんな開集合Oと零集合S1,S2をとってもK=(O∪S1)∩S2^cとならない。(終)
補足:K=(O-S1)∪S2 も出来ない。この場合 K ⊃ O∩S1^c だから、あとは同じ議論で矛盾する。